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Abstract. Using a combination of exact enumeration and the dynamical mean-field theory (DMFT) we
study the drastic change of the spectral properties, obtained in the half-filled two-dimensional Hubbard
model at a transition from an antiferromagnetic to a paramagnetic Mott insulator, and compare it with
the results obtained using the quantum Monte Carlo method. The coherent hole (electron) quasiparticle
spin-polaron subbands are gradually smeared out when the AF order disappears, either for increasing
Coulomb repulsion U at fixed temperature T , or for increasing T at fixed U . Within the DMFT we present
numerical evidence (a continuous disappearence of the order parameter) suggesting that the above magnetic
transition is second order both in two and in three dimensions.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.10.Fd Lattice fermion
models (Hubbard model, etc.) – 79.60.-i Photoemission and photoelectron spectra

1 Introduction

The nature of the magnetic transition from a paramag-
net to an antiferromagnet in a Mott insulator is one of
the fundamental problems in the physics of strongly cor-
related systems [1]. Such transitions are found in numer-
ous Mott insulators as a function of chemical pressure,
as for instance in V2−xCrxO3 [2]. Only recently the Mott
transition in V2O3 could be analyzed within a sophisti-
cated and realistic approach, which includes the orbital
degrees of freedom, by combining the local density ap-
proximation with a many-body dynamical mean-field the-
ory (DMFT) [3]. In an insulating phase one might at-
tempt to understand the magnetic transition using the
Heisenberg model for localized spins. However, close to
the Mott transition the electron localization is far from
perfect, and an explicit description of the charge degrees
of freedom of strongly correlated 3d electrons in magnetic
states is required.

The generic features of the magnetic transition in a
Mott-Hubbard insulator without orbital degrees of free-
dom, such as for instance La2CuO4, are expected to be
explainable in terms of the half-filled (n = 1) single band
Hubbard model [4], which describes electron hopping on
a lattice with nearest-neighbor element t (taken as an
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energy unit t = 1) interacting with each other through
an on-site Coulomb repulsion U . In a Mott insulator at
U � t, the high-energy scale ∝U determines the insu-
lating (charge) gap at half-filling. The charge fluctuations
between two neighboring sites are then realized only as
virtual d1

i d
1
j � d2

i d
0
j transitions which lead to the anti-

ferromagnetic (AF) exchange interaction J of the order
of t2/U (in a strongly correlated regime J = 4t2/U). These
transitions determine the low-energy scale ∝J and are the
source of strong AF correlations near and at half-filling,
being short-range in a two-dimensional (2D) system, but
leading to the long-range order (LRO) below the Néel tem-
perature TN in a three-dimensional (3D) system.

The spectral properties depend on both above energy
scales and can be correctly reproduced only when the re-
spective Green’s functions are determined with sufficient
accuracy. In the high temperature regime when charge
fluctuations are still suppressed (U � kBT � J), the
lower and upper Hubbard subbands are reproduced within
the quantum Monte Carlo (QMC) method not only at
half-filling, but also in weakly doped regime [5–7]. One
finds that, up to some minor modifications, the band
structure is consistent with the Hubbard I predictions [7],
which amounts to the neglect of intersite spin correlations ,
i.e., the system is in a spin disordered state. However, at
low temperature (kBT � J) this method gives in addi-
tion the quasiparticle (QP) bands on the top of the lower
Hubbard band and on the bottom of the upper Hubbard
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band, respectively [5]. These bands can be reproduced in
analytic methods only when spin correlations are explic-
itly included [7,8].

An alternative approach is the DMFT [9], which pro-
vides the exact solution of the Hubbard model in the limit
of infinite dimension [10]. The DMFT has been very suc-
cessful in describing various aspects of strongly correlated
systems [9], including local correlations in magnetically
ordered phases [11]. At n = 1 it reproduces rather accu-
rately the charge gap ∝U , and gives the spectral function
in excellent agreement with the exact diagonalization of
finite clusters [12]. The low-energy scale ∝J is there ob-
tained as well, and this result appears to be consistent
with the retracable path approximation of Brinkman and
Rice [13], which becomes exact in the limit of d → ∞ [14].

It was established by recent studies that the metal-
insulator transition within the paramagnetic (PM) phase
is first order at finite temperature [15]. A discontinuous
transition with hysteresis was found within the DMFT,
using either exact diagonalization [16,17], or numerical
renormalization group [18]. However, a continuous metal-
insulator transition was found at T = 0 in a cluster ap-
proach [19], and within the random dispersion approxima-
tion [20]. In fact, two solutions to the DMFT equations
exist at T = 0 in the PM phase (often loosely referred to
as hysteresis), but this does not imply yet that the tran-
sition is first order. As we will show below, the situation
is somewhat similar for the magnetic transition within an
insulating phase, where two solutions of the DMFT equa-
tions exist at finite temperature.

The magnetic transition within the insulating phase
was even less investigated. It is driven by the low-energy
spin excitations ∝J , and occurs at temperatures well be-
low the metal-insulator transition in a 3D model [21–24].
Also in a 2D model the characteristic temperature be-
low which the spin correlations are stable T ∗ ∝ T MF

N = J ,
where T MF

N is the Néel temperature obtained in the mean-
field approximation for the Heisenberg antiferromagnet, is
lower than the one that corresponds to the suppression
of charge fluctuations at the metal-insulator transition,
in strong coupling [25], and even in the weak coupling
regime [26].

In this paper, we address the problem of the evolu-
tion of the spectral properties in the half-filled Hubbard
model at a transition from an AF to a PM Mott insula-
tor. We show below that the excitation spectra are dras-
tically modified at the magnetic transition. The quality
of the self-energy is of crucial importance for investigat-
ing the magnetic states [11], as its inaccurate form might
easily destabilize the magnetic order. Therefore, we have
adopted the DMFT combined with exact enumeration [9]
to investigate the magnetic states. In the present study we
used up to 26 time slices which is numerically quite exten-
sive, but gives sufficient accuracy. We compare the results
of this approach applied to a 2D Hubbard model with
those obtained using directly the QMC method itself [27],
called below 2D-QMC. This method provides an indepen-
dent check on the accuracy of the DMFT approach, and
on the quality of the obtained self-energy. We investigate

the nature of the transition at finite temperature from the
regime with pronounced AF correlations to a paramagnet
by evaluating the double occupancy and the staggered or-
der parameter using the DMFT method. Altogether, our
results show that the DMFT is very sensitive to the lo-
cal correlations, and predicts the second order magnetic
phase transition within the insulating phase.

The paper is organized as follows. In Section 2 we sum-
marize the formalism and the method to determine the
spectral function within the DMFT. The numerical results
obtained within the DMFT are presented and discussed
in Section 3. They are also compared with the 2D-QMC
calculation, and we present evidence that the magnetic
transition in the Hubbard model is second order. The dis-
cussion of the obtained hysteresis in the double occupancy,
the magnetic transition and the Néel temperature in the
3D Hubbard model, and the main conclusions are pre-
sented in Section 4.

2 Spectral function within the DMFT

We consider the 2D Hubbard model at half-filling with
hopping t between the nearest neighbors 〈ij〉,

H = −t
∑
〈ij〉,σ

c†iσcjσ + U
∑

i

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
. (1)

While the local spin quantization axis determined by spin
order is site dependent in spiral phases in doped systems
(n �= 1) [28], it is fixed in the AF phase, stable at n = 1
in the low temperature regime. We write the staggered
magnetization in the AF phase, 〈Sz

i 〉 = 1
2 〈ni↑ − ni↓〉 =

m exp(iRi · Q), where Q = (π, π) characterizes the AF
order, which allows to transform the kinetic energy in
Hamiltonian (1) to local quantization axes [12],

T̂Q(k) =
1
2

[
εk+Q/2(1̂ + σ̂x) + εk−Q/2(1̂ − σ̂x)

]
, (2)

where εk = −2t(cos kx + cos ky) is the band dispersion,
and σ̂x is the Pauli matrix.

The lattice Green’s function is described by a (2 × 2)
matrix ĜQ(k, iων) in spin space, where ων are fermionic
Matsubara frequencies. In the spirit of the DMFT ap-
proach [9], we approximate the Green’s function using a
local self-energy [10],

Ĝ−1
Q (k, iων) = iων − T̂Q(k) − Σ̂Q(iων). (3)

The corresponding local lattice Green’s function is
ĜQ(iων) = 1

N

∑
k ĜQ(k, iων). The solution of the

Hubbard model within the DMFT is then determined by
the following single-site effective action [29],

Seff = −
∑

σ

∫ β

0

dτdτ ′c†oσ(τ)G0
Q,σσ(τ − τ ′)−1coσ(τ ′)

+ U

∫ β

0

dτ

(
no↑(τ) − 1

2

) (
no↓(τ) − 1

2

)
, (4)
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and by the self-consistency relation:

Ĝ0
Q(iων)−1 = Ĝ−1

Q (iων) + Σ̂Q(iων). (5)

For the calculation of the single-site Green’s function we
use exact enumeration [9], and we use ancillary spins (as in
the QMC), and the sum over configuations is done exactly
in order to solve the DMFT equations self-consistently. Fi-
nally, we determine the spectral function using the lattice
Green’s function for the optimal Q = (π, π),

A(k, ω) = − 1
π

∑
σσ′

Im GQ,σσ′
(
k − 1

2
Q, ω + iε

)
. (6)

The resulting k-dependent spectral density is finally plot-
ted using a 64 × 64 lattice. For comparison, the Green’s
functions and the spectral functions were determined in-
dependently in the direct QMC calculations at finite tem-
perature, and employing the standard maximum entropy
technique [5,7].

We begin by investigating the dependence of the lattice
Green’s function on imaginary time τ for U = 8t. By its
relation to the spectral function (β = 1/kBT ) [30],

GQ(k, τ > 0) = −
∫ ∞

−∞
dω

A(k, ω) exp(−τω)
1 + exp(−βω)

, (7)

it allows to conclude whether or not a gap opens at the
Fermi energy µ. The behavior of GQ(k, τ > 0) at τ � β/2
is crucial, and can be related to the spectral proper-
ties by employing equation (7). Indeed, one finds that
GQ(k, β/2) � 0 implies that A(k, ω = 0) � 0. The sys-
tem is insulating at U = 8t and an AF insulator is stable
at low temperature T , but at sufficiently high T the gap
around the Fermi level vanishes, and the system crosses
over to a strongly correlated metallic regime [7]. This value
of U is in the realistic range for high temperature super-
conductors, and allows us to identify easily both types
of the above behavior. Indeed, at βt = 5 one finds that
GQ(k, τ) � 0 for 0.25 < τ/βt < 0.75 even at X = (π, 0)
and S = (π/2, π/2) points, which correspond to the edge
of the Brillouin zone (BZ) (Fig. 1).

3 Numerical results

3.1 Spectral properties of a Mott insulator

The crossover from an antiferromagnet to a paramagnet
with increasing temperature can be identified by analyz-
ing the behavior of the Green’s function. As an exam-
ple we consider intermediate coupling U = 8t which gives
J � 4t2/U = t/2. By including the quantum corrections
beyond the mean-field theory for the present parameters,
Hanke and his collaborators estimated the temperature
at which the long-range AF correlations disappear in a
quantum 2D system, and found that it satisfies the con-
dition kBT ∗ ≤ t/3 [5,7]. Thus, the long range AF correla-
tions are expected to be lost at βt � 3. Indeed, increasing
T (decreasing β) to βt = 3 results in finite G(kX , β/2),
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Fig. 1. Green functions: local −Gloc(τ ), and k-dependent
−G(k, τ ), as functions of imaginary time τ (in units of t),
at high-symmetry k-points [Γ = (0, 0); X = (π, 0), S =
(π/2, π/2), M = (π, π)], as obtained at U = 8t within the
DMFT (dashed lines) and in the 2D-QMC (solid lines), for:
the AF insulator with polaron band (βt = 5, left), the AF
insulator within the critical regime (βt = 3, middle), and the
metallic phase of strongly correlated electrons at high temper-
ature above the magnetic transition (βt = 1, right).

but the Green’s function GQ(k, β/2) still vanishes within
the majority of the BZ, and thus the gap at the Fermi
level persists. However, the spectral function A(k, ω) at
the X and S points is strongly modified, and the coher-
ent polaronic band is already lost. As we will show in
more detail below, this region of temperature corresponds
still to a PM insulator. In contrast, when the tempera-
ture increases further, a correlated metallic state is found,
with finite GQ(k, β/2) within the entire BZ. The results of
the DMFT and the 2D-QMC nearly coincide (see Fig. 1),
which demonstrates that the DMFT approach treats the
local correlations in a very accurate way in the entire pa-
rameter regime [31].

Next we analyze the spectral properties in different
temperature regimes. The spectral functions found at low
T within the DMFT consist of four spectral features:
(i) two narrow QP (polaron) bands close to the Fermi
energy, at ω � µ, and (ii) two broader (incoherent) struc-
tures which represent two Hubbard subbands. This struc-
ture of A(k, ω) is generic and agrees very well with that
found within the 2D-QMC, as shown in Figure 2. The
presence of the polaron QP subbands shows that the lo-
cal hole-spin dynamics is correctly captured within the
DMFT. The QP subbands vanish when the temperature
increases, and only two Hubbard subbands separated by
the broad gap ∼U can be recognized in the high temper-
ature regime (Fig. 3). Also in this case the DMFT gives
a very accurate description of the spectral function. We
emphasize that although the system is metallic at βt < 1
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Fig. 2. Spectral function A(k, ω) of the half-filled Hubbard model at low temperature βt = 5, with strong antiferromagnetic
correlations for U = 8t. Left (right) part shows the DMFT (2D-QMC) result. Low spectral weight in the DMFT part is indicated
by shadows, while higher weight is shown by white features withing black shadows. The subbands obtained in the 2D-QMD
calculations are shown by points with statistical errors, and the shadows stand for their intensities. The high-symmetry points
as in Figure 1.

Fig. 3. Spectral function A(k, ω) as in Figure 2, but for the paramagnetic phase at βt = 0.25.

for U = 8t, and the spectral weight at ω = 0 is finite (in
particular close to the X and S points), the spectral func-
tion consists of two Hubbard subbands, showing that the
charge gap survives in the high temperature regime. In this
regime of temperature the local moments are disordered,
and their intersite correlations are gradually lost with in-
creasing temperature [23]. Altogether, we have found an
excellent agreement between the present analytic DMFT

approach and the 2D-QMC method for the distribution
of spectral weight and the energy separation between the
Hubbard subbands.

The change in the spectral properties found at U = 8t
for temperature increasing from T = t/5 to T = t/3
(in units of kB = 1) is quite drastic. The distinct QP’s,
well visible close to the Mott-Hubbard gap at T = t/5,
are lost entirely and replaced by broader structures at
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Fig. 4. Spectral function A(k, ω) as obtained in the DMFT
approach along the high-symmetry directions for U = 8t at
βt = 5 (top), and βt = 3 (bottom). The QP bands are lost at
higher temperature βt = 3. The high-symmetry points as in
Figure 1.

T = t/3 (Fig. 4). This illustrates that the spin correla-
tions which are weakened with increasing temperature in-
deed determine the spectral properties. In particular, the
coherent QP bands are lost when the long-range AF corre-
lations disappear and the spin correlations become short
range, with the correlation length shorter than the cluster
size. This interpretation is confirmed by the finite spec-
tral weight found for ω � 2t at βt = 3, which originates
from the coupling of the hole (electron) to local spin fluc-
tuations. While a hole (an electron) couples coherently to
spin fluctuations inducing well formed QP’s at the lower
temperature T = t/5, these processes are to a large ex-
tent incoherent at T = t/3, which leads to broad spectral
structures, reducing even the Mott-Hubbard gap. The de-
creasing spin order is also indicated by the increased spec-
tral weight at ω > 0 (ω < 0) at and in the vicinity of the Γ
(M) point. We emphasize that the low-energy spectral fea-
ture still persists but changes to an incoherent peak above
the magnetic transition, and vanishes only when the local
moments become completely independent of each other at
much higher temperature (Fig. 3).

3.2 Magnetic phase transition

Our approach allows to investigate the nature of the mag-
netic phase transition. It is obtained when increasing U
enhances the Mott-Hubbard gap, and suppresses grad-
ually the charge fluctuations. This is best observed by

looking at the values of double occupancy 〈ni↑ni↓〉, shown
in Figure 5 for the 2D and 3D Hubbard model in the
strongly correlated regime of U > W [where W = 2zt is
the bandwidth of the uncorrelated band, and z is the num-
ber of nearest neighbors in a square (2D) or cubic (3D)
lattice]. The double occupancy is already quite low at
U � W , with 〈ni↑ni↓〉 < 0.05 (〈ni↑ni↓〉 < 0.03) for the
2D (3D) model, and gradually decreases with increas-
ing U . Already at U � W , the local moments for n = 1,
〈S2

i 〉 = 3
4 (1 − 2〈ni↑ni↓〉) [32], are well formed and ap-

proach fast the limit of electron localization (〈S2
i 〉 = 3

4 ).
The double occupancy is suppressed somewhat stronger
for U � W in the 3D case due to a more pronounced AF
order. Therefore, the decrease of 〈ni↑ni↓〉 with increas-
ing U is here not as fast as in the 2D Hubbard model.

The results obtained for 〈ni↑ni↓〉 within the 2D-QMC
simulations first follow the DMFT values, but at higher
values of U are systematically larger. This indicates that
in the strongly correlated regime the double occupancy is
somewhat underestimated due to a smaller phase space
of thermal fluctuations included in the present DMFT
method. Although the same temperature is used both in
the 2D-QMC and the DMFT, the phase space for charge
fluctuations is different. In the DMFT not all but only
these paths contribute that scale to one in the limit of
d → ∞, and those that have weights ∝ 1/dα, with α > 0
and d standing for the actual dimension, are neglected.
Also the magnetic moments are higher in the 2D-QMC,
and this enhances the difference in double occupancy be-
tween the two methods.

When U increases in the strongly correlated regime of
U > W , the superexchange interaction J � 4t2/U de-
creases, and the intersite magnetic correlations become
weaker. When the temperature is fixed, this causes a
crossover from the AF to PM phase, with well formed local
moments and short-range AF correlations. The results ob-
tained within the DMFT approach allowed us to conclude
that this magnetic transition is second order , as both the
double occupancy 〈ni↑ni↓〉, and the staggerred magnetiza-
tion |〈Sz

i 〉| = 1
2 |〈ni↑ − ni↓〉|, exhibit continuous variation

with increasing U . However, when U decreases , the PM
state is metastable in a range of U , which leads to a jump
at Uc = 11.5t (Uc � 15.4t) in a 2D (3D) Hubbard model at
βt = 3 in both above quantitities to those obtained in the
AF phase. As a result, one finds a distinct hysteresis as a
function of increasing/decreasing U (Fig. 5) [33]. When U
decreases, the ratio of Uc/W at the magnetic transition is
somewhat lower in the 3D case (Uc/W � 1.25t) than in
the 2D model (Uc/W � 1.44t), but in both cases electrons
are similarly strongly correlated in the regime of U > Uc

(〈ni↑ni↓〉 < 0.015), and the transition (crossover) between
the AF and PM phase takes place within the Mott insu-
lator. We emphasize that the magnetic order parameter
|〈Sz

i 〉| is larger in a 3D than in a 2D system at U � 1.2W ,
and its value is also larger close to Uc when U decreases,
demonstrating that the magnetic LRO is robust in a 3D
system, in contrast to a 2D system where it appears only
due to the symmetry breaking at shorter length scale. This
observation follows from the decreasing weight of these
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Fig. 5. Double occupancy 〈ni↑ni↓〉 (circles) and local magnetic moment |〈Sz
i 〉| = 1

2
|〈n↑ − n↓〉| (squares) as functions of U/t at

βt = 3 obtained in the DMFT for a 2D (left) and 3D (right) Hubbard model, for increasing (filled symbols) and decreasing
(empty symbols) U/t. Stars in the left panel show 〈ni↑ni↓〉 obtained by the 2D-QMC method.

paths which destroy the AF order when the system di-
mension increases and the classical limit is approached.

The hysteresis in the AF order parameter induces also
the hysteresis in the double occupancy. As expected, this
latter hysteresis is much smaller as the local moments are
already well formed also in the PM states in this range
of U , and are only weakly increased when the spin po-
larization occurs. This behavior is very characteristic of
correlated systems [32]; it shows that the local electronic
correlations are correctly included within the DMFT ap-
proach also in the PM states.

Our conjecture that a second order transition takes
place between the AF and PM insulator is further sup-
ported by the changes of magnetization found with in-
creasing/decreasing temperature at fixed U . Here we dis-
cuss the DMFT data obtained in the 3D case, where the
AF LRO is more robust. When temperature decreases,
the local moments |〈Sz

i 〉| tend to order antiferromagnet-
ically. They show again a distinct hysteresis, now as a
function of decreasing (increasing) T ; for U = 16t it de-
velops (vanishes) around T ∗

N � 0.35t (TN � 0.44t), as
shown in Figure 6. When temperature increases, the mag-
netic moments decrease continuously to zero, and such a
behavior is similar to that of a Heisenberg antiferromag-
net. We interpret a magnetic transition found at T ∗

N when
the temperature is lowered as a sudden collapse of the
PM state, which is metastable in a range of temperature
below TN : T ∗

N < T < TN .
The values of 〈ni↑ni↓〉 are enhanced by thermodynamic

fluctuations at high temperature, and gradually diminish
in the PM state when the temperature is reduced (Fig. 6).
However, this trend is reversed below T ∗

N when the mag-
netic moments order and double occupancy rapidly in-
creases. This is a clear signature of somewhat enhanced
charge fluctuations in the ordered phase. On the contrary,
increasing temperature within the magnetically ordered
state reduces gradually the phase space for charge fluctu-
ations when the magnetic order parameter |〈Sz

i 〉| and the

Fig. 6. Double occupancy 〈ni↑ni↓〉 (circles) and local magnetic
moment |〈Sz

i 〉| = 1
2
|〈n↑ − n↓〉| (squares) as functions of T/t,

obtained for the 3D Hubbard model in the DMFT method.
Filled and empty symbols correspond to increasing and de-
creasing T/t, respectively.

double occupancy 〈ni↑ni↓〉 decrease. In this case the dou-
ble occupancy passes by its minimum precisely at the mag-
netic transition (at T � TN), and starts to increase again
as the thermal fluctuations gradually increase with T in
the PM phase.

4 Discussion and conclusions

It is interesting to ask whether our study concerns indeed
the insulating phase. The metal-insulator transition which
would take place in the PM phase is hidden by the AF
order both in the 2D and in 3D Hubbard model, hence
it could not be determined. However, the compressibil-
ity which decreases smoothly with U in the 3D Hubbard
model [24] indicates that the metal-insulator transition
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would take place at U � 9t, and a lower value can be
expected in the 2D case. Therefore, our analysis of the
spectral properties and the magnetic transition was lim-
ited to the strongly correlated regime of a Mott insulator.

The present study shows that the magnetic transition
is driven by the spin degrees of freedom which modify
local correlations when the magnetic order changes. The
existence of hysteresis in a range of T and U allows for a
direct comparison of the double occupancy in the (stable)
AF state with that found in the (metastable) PM state
for the same parameters, being a measure of local corre-
lations in both states. Our results demonstrate that the
doubly occupied configurations are generated only by vir-
tual charge fluctuations in the strongly correlated regime
of U > W . While such fluctuations are more frequent
in the AF states, they are partly blocked in disordered
states, leading therefore to lower values of 〈ni↑ni↓〉 in the
PM states.

Finally, we consider the value of the Néel temperature
by itself. Using the superexchange interaction J = 4t2/U
(as obtained in the limit of large U), and neglecting
the intersite spin correlations, as done within the Weiss
molecular field theory for the Heisenberg model, one finds
T MF

N = 6t2/U . While the early QMC data [21,22] come
close to T MF

N , more recent QMC calculations included as
well intersite quantum fluctuations and gave thus lower
values of TN [24] (Fig. 7). In this latter case the QMC
results are close to the empirical value of TN expected for
a 3D quantum antiferromagnet [34],

kBT emp
N =

5
192

[11S(S + 1) − 1](z − 1)J, (8)

where z is the number of nearest neighbours (here z = 6),
and S is spin quantum number. We note that indeed T emp

N
reproduces within less than 0.3% the value of TN = 0.946J
found from the finite size scaling of the QMC data ob-
tained for the 3D S = 1

2 Heisenberg antiferromagnet [35],
and both results are indistinguishable from each other in
Figure 7.

By its nature, the present DMFT calculations do not
include the intersite quantum fluctuations, and thus give
the magnetic transition at temperature close to T MF

N . The
latter value falls close to the center of the hysteresis curve
found both at T = t/3 and at U = 16t (Fig. 7), and
shows that the charge fluctuations play still some role in
the strong coupling regime characterized by TN ∝ t2/U ,
enhancing the value of TN . However, the charge fluctua-
tions would be entirely suppressed in the limit U → ∞,
and the DMFT would then reduce precisely to the Weiss
molecular field theory of the Heisenberg model. There-
fore, the volume inside the hysteresis tends to zero with
increasing U → ∞, when two temperatures identified in
our calculation (TN and T ∗

N) decrease and would finally
merge and give just T MF

N as obtained for the Heisenberg
model. This supports our interpretation of the hysteresis,
being a signature of the itinerant behavior consistent with
the second order magnetic phase transition.

Summarizing, we have demonstrated that the spectral
properties of the half-filled Hubbard model change in a

8 12 16 20 24
U/t

0.0

0.2

0.4

0.6

0.8

T
/t

Fig. 7. Magnetic phase diagram of the half-filled 3D Hubbard
model in the strong coupling regime U ≥ 8t. Data points (with
error bars) show the Néel temperature TN as function of U/t
obtained in various QMC calculations: filled triangles [21],
filled diamonds [22], filled squares [24]. The present DMFT
calculations with results shown in Figures 5 and 6 were per-
formed along dotted lines, and the magnetic phase transition
was found at TN (T ∗

N) either for increasing (decreasing) U/t or
for increasing (decreasing) T , as shown by filled (empty) cir-
cles. The value of TMF

N obtained from the Weiss molecular field
theory for S = 1

2
Heisenberg antiferromagnet with J = 4t2/U ,

and the expected experimental value kBT emp
N equation (8), are

shown by dashed and solid line, respectively.

drastic way at the magnetic transition from an antiferro-
magnetic to a paramagnetic Mott insulator. While in the
high temperature regime (J < kBT � U) the system is
characterized by two Hubbard subbands separated by a
gap ∝U , these bands loose partly their spectral weights,
and the polaron QP subbands emerge simultaneously at
low energy ∝J in the low temperature regime (kBT < J).
Using the DMFT method combined with exact enumera-
tion we could establish that the order-disorder magnetic
phase transition in a Mott insulator is second order, and
is driven by the spin degrees of freedom.
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Lett. 79, 1122 (1997)
28. E. Arrigoni, G.C. Strinati, Phys. Rev. B 44, 7455 (1991);
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